Long-Latency Reflexes of the Human Arm Reflect an Internal Model of Limb Dynamics

نویسندگان

  • Isaac L. Kurtzer
  • J. Andrew Pruszynski
  • Stephen H. Scott
چکیده

A key feature of successful motor control is the ability to counter unexpected perturbations. This process is complicated in multijoint systems, like the human arm, by the fact that loads applied at one joint will create motion at other joints [1-3]. Here, we test whether our most rapid corrections, i.e., reflexes, address this complexity through an internal model of the limb's mechanical properties. By selectively applying torque perturbations to the subject's shoulder and/or elbow, we revealed a qualitative difference between the arm's short-latency/spinal reflexes and long-latency/cortical reflexes. Short-latency reflexes of shoulder muscles were linked exclusively to shoulder motion, whereas its long-latency reflexes were sensitive to both shoulder and elbow motion, i.e., matching the underlying shoulder torque. In fact, a long-latency reflex could be evoked without even stretching or lengthening the shoulder muscle but by displacing just the elbow joint. Further, the shoulder's long-latency reflexes were appropriately modified across the workspace to account for limb-geometry changes that affect the transformation between joint torque and joint motion. These results provide clear evidence that long-latency reflexes possess an internal model of limb dynamics, a degree of motor intelligence previously reserved for voluntary motor control [3-5]. The use of internal models for both voluntary and reflex control is consistent with substantial overlap in their neural substrates and current notions of intelligent feedback control [6-8].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccade adaptation in response to altered arm dynamics.

The delays in sensorimotor pathways pose a formidable challenge to the implementation of stable error feedback control, and yet the intact brain has little trouble maintaining limb stability. How is this achieved? One idea is that feedback control depends not only on delayed proprioceptive feedback but also on internal models of limb dynamics. In theory, an internal model allows the brain to pr...

متن کامل

Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.

Although we move our arms rhythmically during walking, running, and swimming, we know little about the neural control of such movements. Our working hypothesis is that neural mechanisms controlling rhythmic movements are similar in the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that seen during leg movement. Our main experimen...

متن کامل

Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm.

Stretch reflexes contribute to arm impedance and longer-latency stretch reflexes exhibit increased sensitivity during interactions with compliant or unstable environments. This increased sensitivity is consistent with a regulation of arm impedance to compensate for decreased stability of the environment, but the specificity of this modulation has yet to be investigated. Many tasks, such as tool...

متن کامل

Acceleration dependence and task-specific modulation of short- and medium-latency reflexes in the ankle extensors

Involuntary responses to muscle stretch are often composed of a short-latency reflex (SLR) and more variable responses at longer latencies such as the medium-latency (MLR) and long-latency stretch reflex (LLR). Although longer latency reflexes are enhanced in the upper limb during stabilization of external loads, it remains unknown if they have a similar role in the lower limb. This uncertainty...

متن کامل

Influence Stretch Reflex Sensitivity in the Human Arm

34 Stretch reflexes contribute to arm impedance and longer latency stretch reflexes exhibit 35 increased sensitivity during interactions with compliant or unstable environments. This 36 increased sensitivity is consistent with a regulation of arm impedance to compensate for 37 decreased stability of the environment, but the specificity of this modulation has yet to be 38 investigated. Many task...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008